Jump to Navigation

Influence of Riparian Vegetation on Local Climate and River Temperature

This project is managed by
Gayle Dana, Jim Brock, and John Stanley

Temperature is of fundamental importance to the function of aquatic ecosystems and the distribution and abundance of species. Water temperature is critical to maintenance of self-sustaining fisheries with considerable resources being applied towards managing flow, channel, and riparian conditions in order to promote optimal thermal regimes. Numerical models that simulate river temperature have come into common use by managers concerned with water quality (pollutant loading) as well as biological communities.

These models typically require meteorologic data (e.g., air temperature, relative humidity, wind speed, and solar radiation). Such data typically are obtained from regional weather stations and applied to conditions at a point in the basin. Some models, such as SNTEMP (Bartholow 1995) make adjustments for elevation but generally it is assumed that the climate data from the weather station (commonly located a t airports) adequately reflect conditions that influence river temperature.

Meteorological data (air temperature, relative humidity, wind speed, solar radiation) were collected in two areas within in the Truckee River Basin, Nevada. Stations within Reno Urban area include the Reno Airport (Reno), which is presently used in the modeling efforts described earlier, and the Desert Research Institute (DRI). At the Lower Truckee River area, data were collected in 4 different habitat types near the river: open water (OW), shaded riparian (SRA), gallery forest (GF), and open field (OF). Two stations were set up in each habitat type. Data were collected from September 27 to October 23, 2001.